C# PROGRAMMING
REGIONAL KEY 2022
Page 2 of 10
[image:]						

[image:]

C# PROGRAMMING
(330)

REGIONAL 2022

Production:
	Program 1: Currency Calculator		__________ (370 points)

			TOTAL POINTS 		__________ (370 points)

Test Time: 90 minutes

Currency Calculator
In this exercise you will create a C# Windows Form Application that can manipulate money in two different ways. On the left-hand side of the window the application will convert one type of currency into several other currency types (for example, US dollars to British pounds). On the right-hand side of the window the application will break the user given amount, rounded down to the nearest dollar, into the fewest number of US bills possible. On the bottom of the window a set of radio buttons let the user choose which currency to convert from and a “Convert” button that performs the above calculations.
In the example below the user enters 123.45 into the Dollars text box, selects the “Dollars” radio button, and clicks the “Convert” button. The user’s given dollar amount is then converted into Pounds, Euros, and Yen and those values are displayed in their respective text boxes. Additionally, the fewest number of US bills necessary to represent $123.45 rounded down to the nearest dollar (one $100 bill, one $20 bill, and three $1 bills) is calculated and displayed in the text boxes on the right.
[image:]

Requirements:
1. You must create a C# Windows Form Application named CS _330_ContestantNumber, where ContestantNumber is your BPA assigned contestant number (including dashes). For example, CS_123_45_6789_0000.
2. Your contestant number must appear as a comment at the top of the main source code file.
3. The main form must not have minimize or maximize buttons in the Form Handle.
4. The main form must have text “Currency Calculator” for its title. The form must start in the center of the screen and must have a Fixed Dialog setting so the size cannot be adjusted.
5. The main form must contain the following items:
a. Four labels, one for each currency type
b. Four textboxes, one for each currency type
c. Six labels, one for each US Dollar bill type
d. Six textboxes, one for each US Dollar bill type
e. Four radio buttons, one for each currency type
	UI Object
	Name
	Text

	Label
	lblDollars
	Dollars

	Label
	lblPounds
	Pounds

	Label
	lblEuros
	Euros

	Label
	lblYen
	Yen

	Textbox
	txtDollars
	

	Textbox
	txtPounds
	

	Textbox
	txtEuros
	

	Textbox
	txtYen
	

	Label
	lblHundredBills
	$100

	Label
	lblFiftyBills
	$50

	Label
	lblTwentyBills
	$20

	Label
	lblTenBills
	$10

	Label
	lblFiveBills
	$5

	Label
	lblOneBills
	$1

	Textbox
	txtHundredBills
	

	Textbox
	txtFiftyBills
	

	Textbox
	txtTwentyBills
	

	Textbox
	txtTenBills
	

	Textbox
	txtFiveBills
	

	Textbox
	txtOneBills
	

	Radio Button
	rdoDollars
	Dollars

	Radio Button
	rdoPounds
	Pounds

	Radio Button
	rdoEuros
	Euros

	Radio Button
	rdoYen
	Yen

	Button
	btnConvert
	Convert

6. When the program loads, the main window needs the following:
a. The currency type text boxes and labels (Dollar, Pound, Euro, Yen) should be left aligned, with font size set to 20
b. The US Dollar bill text boxes and labels (($100, $50, $20, $10, $5, $1) should be right aligned, with font size set to 20
c. The currency type radio buttons and the “Convert” button should be center aligned, with the radio button’s font size set to 16 and the “Convert” button’s font size set to 20
d. The “Convert” button must use a click event called “convertButton_Click” which performs the following functions:
i. Retrieves the user’s given amount from the text box specified by the user-selected radio button (if the “Dollars” radio button is selected, get the amount in dollarsBox)
1. If the user enters an invalid value in a text box, a message box should appear alerting the user about the error (see end of instructions for reference images)
2. If the user does not select one of the currency radio buttons, a message box should appear alerting the user about the error (see end of instructions for reference images)
ii. Convert the amount into the other three currency types, using the following currency rates. For example $123.45 multiplied by 0.76 is 93.82 Pounds and 789 Yen divided by 104.53 is $7.55
1. 1 Dollar = 0.76 Pounds
2. 1 Dollar = 0.84 Euros
3. 1 Dollar = 104.53 Yen
iii. Write the newly calculated currency amounts to their respective text boxes. For example, the 93.82 Pounds calculated above should be set as the text for poundsBox
1. Format the text so that is represents a valid currency amount, rounding to the nearest hundreds place (two decimal places)
iv. Calculate the minimum number of US bills necessary to represent the user’s given amount
1. Round down the user’s given amount to the nearest dollar bill (round $123.45 down to $123.00)
v. Write the newly calculated US bill counts to their respective text boxes.
vi.

[bookmark: _GoBack]Sample Pictures:
[image:]
1: Example of the Message Box that should be displayed when the user inputs an invalid currency amount
[image:]
2: Example of the Message Box that should be displayed when the user does not select a currency type radio button
[image:]
3: User inputted 123.45 Euros, selected the "Euros" radio button, then clicked the "Convert" button.

You will have ninety (90) minutes to complete your work.
Your name and/or school name should not appear on any work you submit for grading. Remember to use your contestant # where appropriate.
Submit a copy your entire solution/project to the flash drive provided. You must submit your entire solution/project so that the graders may open your project to review the source code and/or build and execute your solution/project. Submissions that do not contain source code will not be graded.

Development Standards
· Standard name prefixes must be utilized for variables.
· All subroutines, functions, and methods must be documented with comments explaining the purpose of the method, the input parameters (if any), and the output (if any).

Your application will be scored on the following criteria:

Solution and Project
The project is present on the flash drive						____ 10 pts
The project is named according to the naming conventions				____ 10 pts

Program Execution
Code copied to USB drive and program runs from USB 				____ 20 pts

If the program does not execute, then the remaining items in the program executive section receive a score of zero.

The title of the form is “Currency Calculator	“					____ 10 pts
The main form does not have minimize or maximize buttons
in the Form Handle								____ 10 pts
The form’s start position is the center of the screen and it cannot be resized	____ 10 pts
The window has the correct buttons, text boxes, radio buttons and
labels based upon the Figures							____ 20 pts
Clicking “Convert” button performs both calculations			 	____ 30 pts
Currency Converter: calculations are performed properly			 	____ 30 pts
Currency Converter: amounts are rounded to nearest hundredths place		____ 10 pts
Currency Converter: Message Box is shown for invalid currency amount		____ 20 pts
Currency Converter: Message Box is shown for no radio button selected		____ 20 pts
Bill Breakdown: calculations are performed properly				____ 20 pts
Bill Breakdown: dollar amount is rounded down to nearest dollar			____ 20 pts

Source Code Review
Code is commented at the top, for each function, and as needed 			____ 10 pts
Code uses reasonable and consistent variable naming conventions			____ 10 pts
Currency Converter: code for “convertButton_Click” method is present		____ 20 pts
Currency Converter: code for displaying Message Boxes is present			____ 10 pts
Currency Converter: code for calculating currency values is present		____ 20 pts
Bill Breakdown: code for rounding dollar amount down is present			____ 20 pts
Bill Breakdown: code for finding minimum number of each bill is present		____ 20 pts
Bill Breakdown: Code to stop calculation until proper data is present		____ 20 pts

Total Points: 	____ / 370 pts

Potential Solution
/*
 * CS_330_01_2345_6789
 */
using System;
using System.Collections.Generic;
using System.Windows.Forms;

namespace CSharpProgrammingBPA
{
 public partial class CurrencyConverterForm : Form
 {
 private static readonly double dollarToPound = 0.76;
 private static readonly double dollarToEuro = 0.84;
 private static readonly double dollarToYen = 104.53;

 private static readonly int[] dollarBills = { 100, 50, 20, 10, 5, 1 };

 public CurrencyConverterForm()
 {
 InitializeComponent();
 }

 private void btnConvert_Click(object sender, EventArgs e)
 {
 var convertButton = sender as Button;

 if (convertButton != null)
 {
 var currencyInDollars = getSelectedCurrencyAsDollars();

 if (currencyInDollars == null) return;

 // Convert the dollar amount into each type of currency
 dollarsBox.Text = currencyInDollars.Value.ToString("#.##");
 poundsBox.Text = (currencyInDollars.Value * dollarToPound).ToString("#.##");
 eurosBox.Text = (currencyInDollars.Value * dollarToEuro).ToString("#.##");
 yenBox.Text = (currencyInDollars.Value * dollarToYen).ToString("#.##");

 // Break the dollar amount into the smallest amount of dollar bills possible
 var dollarBillCounts = new List<int>();
 var currentAmount = currencyInDollars.Value;
 foreach (var bill in dollarBills)
 {
 var billCount = maximumNumberOfBills(currentAmount, bill);
 dollarBillCounts.Add(billCount);
 currentAmount -= bill * billCount;
 }

 hundredBox.Text = dollarBillCounts[0].ToString();
 fiftyBox.Text = dollarBillCounts[1].ToString();
 twentyBox.Text = dollarBillCounts[2].ToString();
 tenBox.Text = dollarBillCounts[3].ToString();
 fiveBox.Text = dollarBillCounts[4].ToString();
 oneBox.Text = dollarBillCounts[5].ToString();
 }
 }

 /*
 * Find the maximum number of bills that a dollar amount can be broken into. For example, the amount 3.45 can be broken into three one dollar bills (dollarBill = 1)
 */
 private int maximumNumberOfBills(double amount, int dollarBill)
 {
 var billCount = 0;
 while (amount >= dollarBill)
 {
 amount -= dollarBill;
 billCount++;
 }
 return billCount;
 }

 /*
 * Retrieve the user given currency amount from the selected currency type, then convert into dollars
 */
 private double? getSelectedCurrencyAsDollars()
 {
 double amount;
 if (dollarsRadioButton.Checked)
 {
 if (double.TryParse(dollarsBox.Text, out amount)) return amount;
 else
 {
 MessageBox.Show("Cannot parse the given dollars amount, make sure a valid dollar amount was typed");
 return null;
 }
 }
 else if (poundsRadioButton.Checked)
 {
 if (double.TryParse(poundsBox.Text, out amount)) return amount / dollarToPound;
 else
 {
 MessageBox.Show("Cannot parse the given pounds amount, make sure a valid pound amount was typed");
 return null;
 }
 }
 else if (eurosRadioButton.Checked)
 {
 if (double.TryParse(eurosBox.Text, out amount)) return amount / dollarToEuro;
 else
 {
 MessageBox.Show("Cannot parse the given euros amount, make sure a valid euro amount was typed");
 return null;
 }
 }
 else if (yenRadioButton.Checked)
 {
 if (double.TryParse(yenBox.Text, out amount)) return amount / dollarToYen;
 else
 {
 MessageBox.Show("Cannot parse the given yen amount, make sure a valid yen amount was typed");
 return null;
 }
 }
 else
 {
 MessageBox.Show("No currency type selected, please select which type of currency is given");
 return null;
 }
 }

 }
}

[image:]
image3.png

image4.png

image5.png

image6.png

image1.jpg

image2.png

image7.png

