JAVA PROGRAMMING
REGIONAL KEY 2022

[image:]

[image:]

JAVA PROGRAMMING
(340)

REGIONAL 2022

Production:

Program 1: Tollway Customer Database		 (445 points)
	
	TOTAL POINTS		 (445 points)

Test Time: 90 minutes

GENERAL GUIDELINES:
Failure to adhere to any of the following rules will result in disqualification:
1. Member must hand in this test booklet and all printouts if any.
2. No equipment, supplies, or materials other than those specified for this event are allowed in the testing area. No previous BPA tests and/or sample tests (handwritten, photocopied, or keyed) are allowed in the testing area.
3. Electronic devices will be monitored according to ACT standards.

You will have ninety (90) minutes to complete your work.

Your name and/or school name should not appear on work you submit for grading.

1. Create a folder on the flash drive provided using your contestant number as the name of the folder.
2. Copy your entire solution/project into this folder.
3. Submit your entire solution/project so that the graders may open your project to review the source code.
4. Ensure that the files required to run your program are present and will execute on the flash drive provided.

*Note that the flash drive letter may not be the same when the program is graded as it was when you created the program.

*It is recommended that you use relative paths rather than absolute paths to ensure that the program will run regardless of the flash drive letter.

The graders will not compile or alter your source code to correct for this.
Submissions that do not contain source code will not be graded.

Assumptions to make when taking this assessment:

· There will only be one record created from the supplied data fields in the comments section.
· Users can attempt to enter in erroneous information during an input prompt.
· The program will only exit at a single point which is when they decline to retrieve the single record created.
· All getter and setter methods for the Customer and Address object have been created; the source code for these classes is not accessible. \
· If the user does not want to update the records the program will ask if they want to retrieve the records. If they answer “no” the program terminates. If they answer yes then the output (supplied in this document) will have NO reference ID.

[bookmark: _GoBack]Development Standards:

· Your Code must use a consistent variable naming convention.
· All subroutines (if any), functions (if any), and methods (if any) must be documented with comments explaining the purpose of the method, the input parameters (if any), and the output (if any).
· If you create a class, then you must use Javadoc comments.
Note to Graders:
· Output will be static for the customer name and address; however, the data will vary for the monies deposited and the random reference ID generated.
· The output format should be very similar in its organization.
· Error message may differ from sample output.

Test Case #1.a with Update Entry Error (repeats entry request until Yes or No entered)

Customer record import successful.

Type in "Yes" if you want update this record:
ENTER: Yes or No: sssss

Type in "Yes" if you want update this record:
ENTER: Yes or No:

Test Case #1.b with Retrieval Entry Error (repeats entry request until Yes or No entered)

Type in "Yes" if you want update this record:
ENTER: Yes or No: no

Do you want to retrieve this record?
ENTER: Yes or No: dgsdg

Do you want to retrieve this record?
ENTER: Yes or No:

Test Case #2.a Update (“Yes”) with Numerical Entry Error (repeats entry request until double or integer values entered)

Type in "Yes" if you want update this record:
ENTER: Yes or No: yes

All new records require a new deposit. How much will the customer be depositing?
Please enter in a value between $1.00 to $9,999.99: hsfhs

Please enter a correct value.
Please enter in a value between $1.00 to $9,999.99:

Test Case #2.b Update (“Yes”) with Numerical Entry Error (program truncates all digits past hundredth place value)

Type in "Yes" if you want update this record:
ENTER: Yes or No: yes

All new records require a new deposit. How much will the customer be depositing?
Please enter in a value between $1.00 to $9,999.99: 45.559

Jose Montana deposited a total of $45.55.
 Reference ID: WVB28039

Do you want to retrieve this record?
ENTER: Yes or No:

Test Case #2.c Update (“Yes”) with Numerical Entry Error Beyond Parameters (forces required entry)

Type in "Yes" if you want update this record:
ENTER: Yes or No: yes

All new records require a new deposit. How much will the customer be depositing?
Please enter in a value between $1.00 to $9,999.99: 33333
Please enter in a value between $1.00 to $9,999.99: .01
Please enter in a value between $1.00 to $9,999.99: 345.55

Jose Montana deposited a total of $345.55.
 Reference ID: QIT44464

Do you want to retrieve this record?
ENTER: Yes or No:

	Solution and Project
	

	The project is present on the flash drive
	 	
	10 points

	The projects main class is named TollwayCustomerDataBase
	 	
	10 points

	The class helper method is named setReferenceID(Customer c)
	 	
	10 points

	The class helper method is named getDepositMessage(Customer c)
	 	
	10 points

	The class helper method is named getUserStringInput()
	 	
	10 points

	The class helper method is named getUserNumberInput()
	 	
	10 points

	The class helper method is named consoleRecordCheck(Customer c)
	 	
	10 points

	Program Execution
	
	

	The program runs from the USB flash drive
	 	
	15 points

	If the program does not execute, then the remaining items in this section receive a score of zero.

	The program displays a message declaring successful record import.

	 	
	 10 points

	The program prompts and forces user to enter “yes” or “no” if they want to update the record & it is not case sensitive.

	 	
	 10 points

	If “no” is entered for update: the program prompts and forces user to enter “yes” or “no” if they want to update the record & it is not case sensitive.
	 	
	 10 points

	If “yes” is entered for update: the program prompts and forces user to enter “$1.00 to $9,999.99” the deposit amount. All data entry errors are caught.
	 	
	 10 points

	Program displays customer name and how much was deposited properly formatted: i.e. Jose Montana deposited a total of $56.00.
	 	
	 20 points

	Transaction reference ID is randomly generated with the first three elements being letters and the remaining five are 0 to 9. Note: the letter “O” must be omitted. i.e. Reference ID: KMU43187
	 	
	 20 points

	The program prompts and forces user to enter “yes: or “no” if they want to retrieve the record & it is not case sensitive.

	 	
	 10 points

	If “no” is entered for retrieval: the program prompts says “Goodbye” and the terminates.
	
	 10 points

	If “yes” is entered for retrieval: the program prints the entire record, including the formatted deposit, and the same randomly generated reference ID.
	 	
	 20 points

	Output matches required format.
	 	
	 20 points

	
	
	

	Source Code Review

	
	

	
	
	

	The source code is properly commented
	
	

	 A comment containing the contestant number is present
	 	
	 10 points

	Methods and code sections are commented
	 	
	 20 points

	Code uses try... catch for exception handling for getUserNumberInput() when entering numbers. All values entered beyond given range are not accepted; and all values entered into the thousandths decimal place are truncated.
	
	 30 points

	getUserNumberInput(): All values entered beyond given range are not accepted; and all values entered into the thousandths decimal place are truncated.
	
	 20 points

	main (String args []): Customer object is correctly constructed from data entry into its given attributes, and also properly passes data into attributes of Address object (attribute in Customer).

	
	 10 points

	getDepositMessage(Customer c) method retrieves required fields from Customer and also formats the deposit amount to US currency including “$” and “ ,” plus the cents.
	 	
	 30 points

	setDepositCustomerRecord(Customer c): calls on getUserNumberInput() for data entry and deposits values into customer object; and calls setReferenceID(Customer c) to create reference ID.
	 	
	 20 points

	setDepositCustomerRecord(Customer c): calls on getDepositMessage(c) for String to print out for feedback to the user.

	 	
	 10 points

	setReferenceID(Customer c): randomly generates three capital letters, and omits the latter “O”.
	 	
	 20 points

	setReferenceID(Customer c): randomly generates an integer greater than 9,999 and less than 100,000; concatenates with the three letters and returns the value. The reference ID must be in the following format(L: letter & N: number): LLLNNNNNN
	 	
	 20 points

	consoleRecordCheck(Customer c): retrieves all data from the customer object using its getter methods. Places information in proper format
	 	
	 10 points

	consoleRecordCheck(Customer c): formats the deposit retrieved from customer object into US currency including “$” and “ ,” plus the cents.
	 	
	 20 points

	
	
	

Total Points =____ / 445 points

Suggested Solution

[image:]

[image:]
[image:][image:]

[image:]

[image:]
image3.png
VWONOU B WN R

import
import
import
import

public
{

sta
pub!

//Pi

pri

java.util.*;

java.text.NumberFormat; //They can also use other formatting methodology
java.util.locale;

java.util.Random; //They can also use other random number generation tactics

class TollwayCustomerDataBase

tic Scanner sc = new Scanner(System.in);
lic static void main (String args [])

{

//Pre loaded customer data: students will only get the string literals
Customer custl = new Customer(“Montana","Jose", "Ford", "F15@", "ABC-123", 55.00);
custl.address = new MailingAddress ("3445 Rockhill Rd.", "Santa Fe", "New Mexico", "77777");

String yesNo=
//Checks that the customer object was created /////////////1/1/1111111111111111111111
if(custl != null & custl.address != null)

System.out.println(“Customer record import successful.");

//Prompts the user to see if they want to update the record /////////////111111111111111111111111]
do{
System.out.print("\nType in \"Yes\" if you want update this record:\nENTER: Yes or No: ");
yesNo = getUserStringInput(); //helper method call
if(yesNo.equals("yes"))
setDepositCustomerRecord(custl); //helper method call
Jwhile (yesNo.equals("yes") == false && yesNo.equals("no") == false);

//Prompts the user to see if they want to retrieve the record ///////////1/1/1111111111111111111111/

do{
System.out.print("\nDo you want to retrieve this record?\nENTER: Yes or No: ");
yesNo = getUserStringInput(); //helper method call
if(yesNo.equals("yes"))

consoleRecordCheck(custl); //helper method call
else if(yesNo.equals("no")){
System.out.print("\nGoodbye!");
System.exit(@); //this is the only program exit
}
} while (yesNo.equals("yes") == false && yesNo.equals("no") == false);

}
rompts the user to submit a deposit: calls other helper methods ///////////1/111111111111111111111111]

vate static void setDepositCustomerRecord(Customer c)

{

System.out.println("\nAll new records require a new deposit. How much will the customer be depositing? ");
double newDeposit = getUserNumberInput(); //helper method call

c.setDeposit(newDeposit);

setReferenceID(c); //helper method call

String message = getDepositMessage(c); //helper method call

System.out.println(message);

¥

image4.png
59 //Creates and stores the reference ID (random letters and numbers) /////////////1//11111111111111111111111
60 //helper method

61 private static void setReferenceID(Customer c)
62 {

63 String referenceString = "";

64 char randomReferenceletter;

65 Random rand = new Random();

66

67 for (int i=@; i<3; i++)

68 {

69 do

70 {

71 randomReferenceletter = (char)(rand.nextInt(26)+'A");
72 } while (randomReferenceletter == '0');
73 referenceString += randomReferenceletter;
74 ¥

75 int randomReferenceNumber;

76 do{ randomReferenceNumber = rand.nextInt(100000);
77 } while(randomReferenceNumber<10000) ;

78 referenceString += randomReferenceNumber;

79 c.setReferenceTicket(referenceString);

80 ¥

81

82 //Displays the message in console after a successful deposit entry /////////////111111111111111111111111]
83 //helper method
84 private static String getDepositMessage(Customer c)

85 {

86

87 NumberFormat d = NumberFormat.getCurrencyInstance(new Locale("en", "US"));

88 return "\n" + c.getFN() + " " + c.getLN() + " deposited a total of " + d.format(c.getDeposit())+". \nReference ID: "+
89 c.getReferenceTicket();

%0 ¥

91

92

93 //Gets the user input for the yes or no prompts and turns it into LC /////////////1/1111111111111111111111/
94 //helper method
95 private static String getUserStringInput()

96 {

97 String temp = sc.nextlLine().toLowerCase();
98

99 return temp;

100 ¥

101

102 //Gets the user input for the deposit prompt ///////////1//11/11111111111111111111]
103 //helper method
104 private static double getUserNumberInput()

105 {

106 double temp;

107 while(true){

108 try{

109 do{

110 System.out.print("Please enter in a value between $1.00 to $9,999.99: ");
111 temp = sc.nextDouble();

112 sc.nextLine();

113 temp = ©.01 * Math.floor(temp *100);
114 Jwhile(temp >9999 || temp <1);

115 return temp;

116

117 ¥

118 catch(InputMismatchException e)

119 {

120 sc.next();

121 System.out.println("\nPlease enter a correct value.
122 ¥

123 ¥

124

125 ¥

126

image5.png
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

//Prints the final record to the console by using data from the object ///////////1//////11111111111111111711
private static void consoleRecordCheck(Customer c)
{
NumberFormat d = NumberFormat.getCurrencyInstance(new Locale("en", "US"));
System.out.println("\n"+c.getFN() + " " + c.getLN());
System.out.println(c.address.getAdd());
System.out.println("Deposit: " + d.format(c.getDeposit()));
System.out.println("Car Information: " + c.getMake() + " " + c.getModel());
System.out.println("Reference ID: " + c.getReferenceTicket());
//System.out.println(c); //This prints the record from its toString method
}

image6.png
147 class Customer

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
17
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

{

private String last_Name;
private String first_Name;
private String carMake;

private String carModel;|
private String carLicensePlate;
private double deposit;
private String reference =
//private List<String> references = new ArrayList<>(); //This

public MailingAddress address;

public Customer (String ln, String fn, String cMa, String cMo,
{
this.last_Name = 1ln;
this.first_Name = fn;
this.carMake = cMa;
this.carModel = cMo;
this.carlicensePlate = lp;
this.address = new MailingAddress();
this.deposit = de;
}

public String getLN() //gets last name

return this.last_Name;

}
public void setLN(String ln) //sets last name

this.last_Name = 1ln;

}
public String getFN() //gets first name

return this.first_Name;

}
public void setFM(String fn) //sets first name

this.first_Name = fn;

}
public String getMake() //gets make of car

return this.carMake;

}

public void setMake(String ma) //sets make of car

this.carMake = ma;

}

is in the next round

String 1lp, Double de)

image7.png
public String getModel() //gets model of car

return this.carModel;

}
public void setModel(String mo) //sets model of car

this.carModel = mo;

}
public Double getDeposit() //gets deposit

return this.deposit;

}
public void setDeposit(Double d) //sets deposit amount

this.deposit = d;
}

public String getlLicensePlate() //gets plate #

return this.carlLicensePlate;

}
public void setLicensePlate(String lp) //sets plate #

this.carlicensePlate = lp;

}

public void setReferenceTicket(String d)

reference = d;

}

public String getReferenceTicket()

return reference;|

}

//This is not used in the program. If a student tries to print the object we will get a similiar output and its wrong

/*
Customer[Jose Montana
Ford F150
ABC-123
456.0]
*/
public String toString()
{

return this.getClass().getName() + "[" + this.
+ this.getLN() + "\n" + this.getMake() +

etFN() + " "
" + this.getModel() +

"\n" + this.getlicensePlate() + "\n" + this.getDeposit() + "1";

image8.png
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

class MailingAddress
{
private String street;
private String city;
private String state;
private String zipCode;

public MailingAddress()
{

this.street
this.city =
this.state
this.zipCode
}

public MailingAddress(String s, String c, String st, String zc)

{

this.street
this.city
this.state
this.zipCode = zc;

}
public String getAdd()

{

return this.street + "\n" + this.city +

}

, "+ this

.state + " " + this.zipCode;

image1.jpg

image2.png
BUSINESS

PROFESSIONALS
of AMERICA

Giving Purpose to Potential

